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The influence of the finite numbé&t of particles coupled to a monochromatic wave in a collisionless plasma
is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an
N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from
the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long
time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the
pulsating separatrix crossings drive the relaxation towards thermal equilibrium.
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[. INTRODUCTION microscopic dynamics is computed through a symplectic
code, whereas the numerical implementation of the kinetic
It is tempting to expect that kinetic equations and theircounterpart of this system involves a semi-Lagrangian Vla-
numerical simulation provide a fair description of the time SOV solver.
evolution of systems with long-range or “global” interac- In Sec. lll, we focus on long time numerical simulations
tions. Yet, physical systems are obviously composed of &f both kinetic and finiteN systems for initial conditions
finite (albeit large number of degrees of freedom. For in- modeling bump-on-tail beam-plasma instability or damping.
stance, a plasma is a systemMtharged particles in inter- We review the well-known results of linear theory and show
action. A relevant issue, both for fundamental and computahow long time behaviors are intrinsically related to the non-
tional reasons, is to test whether the kinetic description majinear regime. Our model offers a good alternative to address
hide truly physical, finiteN, behaviors. We address this issue the recently controversial iss(i,6| of the long-time evolu-
for a typical example where long-range interactions comdion encountered in the Vlasov-Poisson system. In Sec. IV,
into play, namely wave-particle interactions, which are ubig-we analyze quantitatively the finitd-effects. In particular,
uitous in the physics of hot plasmas—3]. we show how the discrepancies between kinetic and fMite-
Restricting to the electrostatic and collisionless case, itong time behaviors can be related to the presently actively
has been shown that the interaction of resonant particles wittivestigated topics of the possible inadequacy of Gibbs ther-
Langmuir long-wavelength modes can be described by a&odynamics to predict time-asymptotic dynamical behaviors
Hamiltonian self-consistent model, instead of the traditionain the limit N—o for long-rangesystems. More precisely,
Vlasov-Poisson kinetic approach. We consider the caswe give hints to the non-commutation of limits-o and
where particles interact with a single mode. In Sec. Il, weN—c for the mean-field model. We conclude in Sec. V.
present the single-wave Hamiltonian model, whose universal
features were recently emphasized in different contegx&. Il. MEAN-FIELD MODEL FOR THE LANGMUIR
The essential property of this model is its mean-field nature: WAVE-PARTICLE INTERACTION
resonant particles only interact with the wave, which is the
only effective collective degree of freedom representing lon-
gitudinal oscillations of bulk particles. These bulk particles,
whose individual characters are absent from the physical
mechanism at work, namely, wave-particle interaction, are Without collisions, plasma dynamics is dominated by col-
then eliminated in our approach. There are thus no diredective processes. Langmuir waves and their familiar Landau
particle-particle interactions in our model. There is only adamping and growttj7] are a good example of these pro-
mean-field coupling, which enables one to derive rather dicesses, with many applications, e.g., plasma heating in fusion
rectly its kinetic limit[4]. We use this single wave-particle devices and laser-plasma interactions. For simplicity we fo-
model to investigate the discrepancies between kinetic andus on the one-dimensional case, relevant to electrons con-
finite-N approaches. Numerically, the finit-Hamiltonian  fined by a strong axial magnetic field, and assume that ions
act as a neutralizing fixed background. The traditional de-
scription of the interacting particles and fields then rests on

A. Links between the traditional Vlasov-Poisson treatment
of Langmuir waves and the self-consistent
wave-particle Hamiltonian model

*Email address: firpo@newsup.univ-mrs.fr the (kinetic) coupled set of Vlasov-Poisson equatidBs9].
"Email address: doveil@newsup.univ-mrs.fr The current debate on the long-time evolution of this system
*Email address: elskens@newsup.univ-mrs.fr hints that further insight in this fundamental process is still
SEmail address: Pierre.Bertrand@Ipmi.uhp-nancy.fr needed5].

1063-651X/2001/6@2)/02640710)/$20.00 64 026407-1 ©2001 The American Physical Society



M-C. FIRPOet al. PHYSICAL REVIEW E 64 026407

Our approach to(Langmuip wave-particle interaction dielectric functione(k,w)zl—wg/wz. With these rescaled
complements this usual treatment in that, to capture theariables andV=(ek’¢,)/(a’m), this system defines the
physical mechanism at work, electrons are partitioned in twaself-consistent dynamidgsvith N+ 1 degrees of freedom
populations: bulk and tail. The idea behind this discrimina-
tion is simple: wave-particle interaction involves the reso- N
nant tail particles whose velocity is close to the phase veloc- V= iN‘lz exp(—ixy), 3
ity of the wave under consideration. These waves are just the I=1
collective macroscopic degrees of freedom, capturing the

longitudinal oscillations of other nonresonant, bulk particles, ;'(l =iV exp(ix;) —iV* exp —ix,) (4)
so that these bulk particles participate in the effective wave-
particle dynamics only through the waves. for the coupled evolutionin dimensionless fornof the

Langmuir modes are thus collective oscillations of bulke|ectr0ns and wave Comp|ex amp|itu@£star means a com-

particles, represented by slowly varying complex amplitudeslex conjugate and=d/dt). This evolution derives from the
in an envelope approximation. Their interaction with indi- Hamiltonian

vidual tail particles is described by a self-consistent set of
Hamiltonian equation§l,10,11. These already provided an N
.efficielj_t basig[12] for. investigatin_g the colld beam plasma H(x,,p, ,g,g*)ZE 7'_[\1—1/2§ei><|_|\1—1/2§* e x|,
instability and exploring the nonlinear regime of the bump- =1

on-tail instability [13]. Analytically, they yield an intuitive ©)
and rigorous derivation of spontaneous emission and Landau 1/ )

damping of Langmuir waveil4]. In addition, as it elimi- Where{=NY4/. This syzstem conserves energg=H and
nates the rapid plasma oscillation scalg®, this self- momentumP=X,p;+[{|*. An efficient fourth-order sym-.
consistent model offers a genuine tool to investigate |ongplect|c_|ntegrat|on scheme is used to study this Hamiltonian
time dynamics. numerically[13].

p2

B. The single wave model C. Kinetic limit and study of finite- N effects

We discuss the case of one wave interacting with the par- As we follow the motion of each particle, we can address
ticles. Though a broad spectrum of unstable waves is genethe influence of the finite number of particles on the long-
ally excited when tail particles form a warm beam, thetime behavior of the system. This question is eluded by the
single-wave situation can be realized experiment@d@  Kinetic Vlasov-Poisson description, and one might argue that
and allows leaving aside the difficult problem of mode cou-finite N is analogous to numerical discretization in solving
pling mediated by resonant particlgg5]. Moreover, recent kinetic equations. Thus we investigate the kinetic linMt,
studieq 2,3] have stressed the genericness of the single-wave- . As there is no direct particle-particle interaction in our
model, which we discuss later on. model (5), it is possible to express in a simple way tNe

Consider an electrostatic potential perturbati®igz, 7) —oo |imit through a parallel treatment of the particles and
= ¢y (7)expi(kz—w,7)+c.c. (c.c. means complex conjugate the wave. The mean-field coupling between collective
with complex envelopeb,, in a one-dimensional plasma of (wave and individual(particles degrees of freedom enables
lengthL with periodic boundary condition@nd neutralizing one to avoid the derivation of a full Bogoliubov-Born-Green-
backgroundl Wave numberk and frequencyw, satisfy a  Kirkwood-Yvon (BBGKY) hierarchy.
dispersion relatione(k,w,)=0. The density ofN (quas) In the kinetic limit N—«, the discrete distributiorr is
resonant electrons isa(z,7)=(nLIN)SL,8[z—z(7r)], thus replaced with a density(x,p,t), and system(3),(4)
wheren is the electron number density argis the position ~ Yields the Vlasov-wave system
at time 7 of electron labeled (with chargee and massn).

Nonresonant electrons contribute only through the definition d_VziJ exp(—ix)f(x,p,t)dxdp, (6)
of the dielectric functione, so that¢, and thez’s obey dt
coupled equationgl,12]
v b 2 LIV explix) V¥ expl~x)] 2 =0, (7
d ine —+p—+[1Vexpix)—I exp(—ix)]—=0.
d)k:—z exg —ikz+ior], (1) gt " ox ap

A7 e k2N(9el dary) S
For initial data approaching a smooth functibas N— o,

2, the solutions of Eqg3),(4) have been proved to converge to
d<z iek ) ] et
F :Fqgk exfdikz,—iwyr]+c.C. (2)  those of the Vlasov-wave syste(®),(7) over any finite time

r

interval [4]. This legitimizes our comparison between finite
N and kinetic behaviors.

with € the vacuum dielectric constant. We renormalize time  The kinetic model(6),(7) is integrated numerically by a
and positions to t=a7, x=kz—w,7, where «®  semi-Lagrangian solver, which covers thef) space with a
=ne?/[meg(del dwy)]. In particular,a= (n/2n,)*3w, for a  rectangular mesh. The functioh (interpolated by cubic
cold plasma with density,, plasma frequencys,, and splineg is transported along the characteristic lines of the
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kinetic equation, i.e., along trajectories of the original par-intensity of the wave, is a manifestation of these analogies.
ticles[17]. Therefore, in addition to the truly physical effects ~ Now we return to the original motivation of this work and
of the discrepancies between finlteand kinetic systems on review wave-beam instability and damping.
long time simulations, we shall also compare in this article
computational finite grid effects of the kinetic solver with the IIl. WAVE-BEAM INSTABILITY
granular aspects of thd-particle systenj18|. _
A. Linear study
Let us first study linear instabilities and remark that one
D. Universal features of the single-wave model solution of Egs.(3),(4) corresponds to vanishing field,

The single wave model was first formulatgt?,10 asa =0, with particles evenly distributed on a finite set of beams
simplified model to treat the instability due to a weak coldWith given velocities. Small perturbations of this solution
electron beam in a plasma with fixed ions. For this singulahave 8V= Ve, with ratey solving[14]
case, it was clear that retaining only a single Langmuir mode N
was a good approximation even till some primary stage of _ T | L2
nonlinegr satuprgtion. This derivation invol\rjed ne}:turalg ap- Y=y tiyi=iN 21 (y*ipy) = ®)
proximations, but did noa priori preserve the Hamiltonian
or Lagrangian structure of the dynamigkough the latter is For a monokinetic beam with velocity, Eq. (8) reduces to
recovered in the final equationsand a more direct deriva- y(y+iU)2=i; the most unstable solution occurs 1dr=0,
tion within the Hamiltonian and Lagrangian formalism haswith y,=/3/2 andy,=1/2. For a warm beam with smooth
been establishefd.,11]. initial distribution f(p) (normalized tof fdp=1), the con-

Recently, different studig,3] have extended the regime tinuous limit of Eq.(8) yields
of application of the single-wave model to a much larger
class of instabilities and have derived it in a generic way in . L,
different contexts. Crawford and Jayarani&h studied the 72'[ (y+ip) “f(p)dp. ©)
collisionless nonlinear evolution of a weakly unstable mode,
in the limit of a vanishing growth ratg—0". They derived  For a sufficiently broad distributiof{f'(0)|<1], we obtain
in this limit, for a multispecies Vlasov plasma, the |y,|y,=y,#f'(—7v;), where f’=df/dp, and, for|f”(0)|
asymptotic features of the electric field and distribution func-< 71, one findsy,~ mv,f"(0). Except for the trivial solu-
tions. These reveal that the asymptotic electric field turns oufion given by y,=0, one easily checks that other solutions
to be monochromati¢at the wavelength of the linear un- can only exist for a positive slop (0). Then the perturba-
stable modeand that thenonresonantparticles respond to tjon is unstable as the time behavior &7 is controlled by
this electric field in an essentially linear fashion whereas thehe eigenvalue with positive real part, i.e., with growth rate
resonantparticle distribution has a much more complicated y, ~ 4, = 7f’(0)>0. For negative slope, one recovers the
structure, determined by nonlinear processes, e.g., particl;ear Landau damping parad@¥]: the observed decay rate
trapping. That is, starting from a much wider class of insta-,, = 7f’(0)<0 is not associated with genuine eigenvalues,
bilities than the original single wave model proposed byput with phase mixing of eigenmodgs4,20—22. This is a

O'Neil, Winfrey, and Malmberd12], Crawford and Jayara- direct consequence of the Hamiltonian nature of the dynam-
man derive asymptotic forms for the electric field and distri-jcs [14].

bution functions that precisely feature the assumptions for
the single wave model.

del-Castillo-Negreté¢ 3] derived initially the single wave
picture using matched asymptotic methods to treat the reso- This linear analysis generally fails to give the large time
nant and nonresonant particles. In the wider context of selfoehavior. This is obvious for the unstable case as nonlinear
consistent chaotic transport in fluid dynamics, he alsceffects are no longer negligible when the wave intensity
showed that the single-wave model provided a simplifiedgrows so that the bounce frequenay,(t)=+2|V(t)| of
starting point to study the difficult problem afctivetrans-  trapped particles in the wave becomes of the order of the
port (as opposed to the transportgdssivescalars which do linear growth ratey, .
not affect the flow. Actually, the single-wave model captures ~ We used the monokinetic case as a testfzd23. As
the essential features of the self-consistent transport of voseen in Fig. 1, finiteN simulations show that the unstable
ticity, i.e., an advective field that modifies the flow while solution grows as predicted, until it saturates to a limit-cycle-
being transported, through the constraint of a vorticity-like behavior where the trapping frequeney(t) oscillates
velocity coupling. Self-consistent active transport is a ubig-between 1.2, and 2y, . In this regime, some of the initially
uitous phenomenon in geophysical flows or in fusion plas-monokinetic particles have been scattered rather uniformly
mas with the problem of magnetic confinement. over the chaotic domain, in and around the pulsating reso-

Finally, we remark that the single wave model has closenance, while others form a trapped bunch inside this reso-
connections, to be further clarified, with systems of couplechance(away from the separatrixas observed in Fig. R23].
nonlinear oscillators, such as those first studied by Kuramotdhis dynamics is quite well described by effective Hamilto-
[19]. The occurrence of a phase transition in the regime ohians with few degrees of freedofhl,21]. Note that it can-
Landau dampindg20], with order parameter the mean-field not be easily followed by a numerical Vlasov solver, as the

B. Nonlinear regime
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08r T initially spatially homogeneous.
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initial beam has a singular velocity distribution function. A. The damping case

In this article, we discuss the large time behavior of the A thermodynamical analys[20] predicts that, for a warm

;/va_rtm beflr(r)w CF"’.‘SG’ ngﬁ(;_(pol)iotst thed_vvta_\;)e tnom]inal t\'/e- beam(i.e., if the velocity distributiorf has a large width, as
OCty Po="1. FIgure Ispiays three distribution IUNCUons ;,, Fig. 3 and small enough initial wave amplitude,, as-

(in dimensionless forpwith similar velocity width(herec ymptotically scales a®\~ Y2 in the limit N—c. Figure 4

normalizesffdp=1 in each case (i) a function(CD) giv- ) . .
ing the same decay rate for all phase velocitiép)=c shows the evolution of a small amplitude wave launched in

—ac/(p;—p) if —3.96<p=3.96 andf(p)=0 otherwise, the beam. TheN-pa_rt_icIe system(curve N)_and the kin_etic
with a=11.89 andp,=15.85, (i) a function(CG) giving a system(curv.e V) initially damp gxponent|ally as predﬁu;ted
constant growth rate for all phase velocitiis], f(p)=c 0¥ perturbation theorj14], for a time of the order ofy,| .
—acl/(p,+p) if —3.96<p=3.96 andf(p)=0 otherwise, After f[hat phase-mixing time, trapping .|nduces nonlinear
with a=11.89 andp,=15.85, (jii) a truncated Lorentzian evolutl_on and both systems evolve differently. For the
(TL) with positive slopef(p)=(c/m)/[(p—p,)2+a?] if N-particle system, the wave grows to a thermal level that
—7.42<p=<3.18 andf(p)=0 otherwise, witha=2.12 and  scales adl~ 12, corresponding to a balance between damping
p,=1.06. and spontaneous emissi¢h4,20. For the kinetic system,
For the growing case, nonlinearities result from theinitial Landau damping is followed by slowly damped trap-
growth of the wave intensity. For the damping case, the linping oscillations around a mean value; this mean value also
ear description introduces time secularities which ultimatelydecays to zero, at a rate which decreases for refined mesh
may cause the linear theory to break down. The ultimatesize. Figure 4 thus reveals that finkkand Vlasov behaviors
evolution is intrinsically nonlinear, not only if the initial field can considerably diverge as spontaneous emission is taken
amplitude is large, as in O’'Neil’s seminal trapping picture forinto account.
one wave 8], but also if one considers the system evolution  Figure 5 represents the time evolution of the wave ampli-
over time scales of the order of the trapping titwéich may  tude for different values oi. It clearly shows how finiteN
be large if the initial wave amplitude is smellThe question wave evolutions depart progressively from the-% curve
of the long-time fate of plasma wave amplitude is thus far(the later for largeN). One should also notice, from Figs. 4
from trivial [5]. Though some simulatior{24] suggest that and 5 and for sufficiently largé, the onset of nonlinear
nonlinear plasma waves eventually approach a Bernsteireffects at large time. In spite of the smallness of the initial
Greene-Kruskal steady std@b] instead of a Landau vanish- values of the wave amplitude, nonlinear effe¢tsrough
ing field, the answer should rather strongly depend on initiatrapping eventually come into play and stop Landau expo-
conditions[6]. Our N-particle, one-wave system is the sim- nential decay, marking the beginning of a different dynami-
plest model to test these ideas. cal regime for which the decay is far slower.

IV. FINITE N-EFFECTS AND KINETIC TREATMENT B. The single wave warm beam instability

IN LONG-TIME DYNAMICS . . e
Now consider a warm beam with a velocity distribution

First of all let us mention that for finithl, the particles are with a positive slope apy=0. Line N1 (N2) of Fig. 6
initially distributed in (x,p) so that their distribution ap- displays Ifiw,(t)/y,] versus time in a numerical integration of
proached smoothly in the largeN limit [1,13,14. (3),(4) for a CG distribution withN=128 000(512 000 and
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* FIG. 3. Initial warm beam velocity distributions.
0.08
® growth rate. Saturation occurs faf, /y,~3.1[9]. LinesN1
e andV1 do not superpose beyond the first trapping oscillation
004 b after saturation. Note that, in our system, oscillating satura-
tion cannot be related to excitation of sideband or satellite
0.2 Langmuir waves as our single-wave Hamiltonian does not
o o allow for any spectrum of waves.

Beyond the first trapping oscillation, kinetic simulations
002 exhibit a second growth at a rate controlled by mesh size.
ool Line V2 suggests that a kinetic approach would predict a

level close to the trapping saturation level on a time scale
006 - awarded by reasonable integration time. This level is fairly
ool below the thermodynamic lev&ly, predicted by a Gibbsian

approacH20]. Such pathological relaxation properties in the
o1 " N— o limit seem common to mean-field long-range models

[26]. Both kinetic simulations also exhibit a strong damping
04 of trapping oscillations, which disappear after a few oscilla-
oos| © tions, whereas finit& simulations show persistent trapping
006 - oscillations.

One could expect that finitl-effects would mainly damp
oy these oscillations, so that the wave amplitude reaches a pla-
002 - teau. However their amplitude does not depend on the num-

P oo ber of particlesN, which shows that they are not an artifact
002 due to “poor accuracy” of finiteN simulations. Moreover
the wave amplitude slowly grows further, whereas the veloc-
o ity distribution function flattens over wider intervals of ve-
006 | locity [18,23.
-0.08

4 T T T T
0.1
0.2 L . L L L L N

4 3 2 -1 0 4 1 2 3 4 3l
FIG. 2. Snapshots of thex(p) space a(a) y,t=6.24,(b) vy,t o
=17.5,(c) ¥,t=100 for the cold beam simulation of Fig. 1. Dots ~z2r .
are theN=10000 particles, which were initially distributed on a 15
monokinetic beam, faster than the wagweith very small initial £ m
intensity). The instantaneous wave resonance “cat eye” is drawn to ! j(’ M i
help in visualizing the instantaneous force on particles. A 05,
0 . . . .
0 20 60 80

v,=0.08. LineV1 (V2) shows the evolution of [y(t)/y;] it

versusy,t in numerical integration of the kinetic system for
the same initial conditions with a 32128 (256x 1024) grid

100

FIG. 4. Time evolution of |fwy(t)/|y.|] for a CD velocity distri-
bution and initial wave amplitude below thermal levelN)

in (x,p) space. All four curves exhibit the same initial expo- N-particles system witilN=232 000, (V) kinetic scheme with 32
nential growth of linear theory with less than 1% error on thex 512 (x,p) grid. Inset: short-time evolution.
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FIG. 5. Time evolution of Ifwy(t)/|y|] for an initial CD veloc-
ity distribution and different values di. When necessary for read-
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’ . . . . .
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This second growth after the first trapping saturation de-

e e 1o ton it b i 1 3313, 2) 25062 )

’ . grid; N-particles system with N1) N=128000, (N2) N
a longer duration, and curw¥3 corresponds t=64000 515 0go;(b) Comparison of CGN2) with TL initial distribution
with the TL distribution of Fig. 3. Although curvB3 corre-  for (N3) N=64 000, (N4) N=2 048 000.
sponds to 8 times fewer particles than culNg, the final
level reached at the end of the simulation is lower. In thein the kinetic Vlasov limit, it is the first Fourier component
second growth regime, particles are transported further inf the spatial density
velocity, so that the plateau if(p) broadens with time. As
will be clearly shown in Sec. IV D, this spreading is due to
separatrix crossing, i.e. successive trapping and detrapping
by the wave 23]. As the resonance width of the wave sepa- _ o
ratrix grows, the wave can trap particles with initial velocity A Spatially homogeneous phase space with independent par-
further away from its phase velocity. Noting that the TL dis- ticles corresponds obviously to [t ™| scaling asN™*?,
tribution decays while the CG distribution still grows for ~ i-€., to a vanishingM)|. From Eq.(3), and dropping the
>0.05, we see that, with TL, fewer particles can give mo-superscript ), it follows that
mentum to the wave when being trapged P is conservey )
hence the second growth is slower for the TL distribution. V=iM*. (12)

We followed the evolution of the wave amplitude of curve )
N3 of Fig. 6b) up to y,t=1750. Starting from the first trap- Putting
ping saturation level, equal to 40% of the thermodynamic
level Vy,, we observe persistent amplitude fluctuations with
a growth rate that slowly decreases as we reach\Q,7&
the end of the computation.

Line N4 of Fig. 6b) corresponds to the TL distribution d|V|
with 2048000 particles and shows persistent oscillations ——=|M|sin(a— 0). (14)
with approximately the same amplitude as b+ 64 000. dt

FIG. 6. Time evolution of Ifw,(t)/y]. (@ CG initial distribu-

|v|<°°>=f exp(ix)f(p,x,t)dpdx (12)

2V=2|V]exp(—i )= wiexp—ib), (13

one obtains from Eq12)

Moreover, if the wave amplitude displays a sinusoidal tem-

poral evolution(e.g., due to trapping oscillations, thes
Let us show that the occurrence of trapping oscillations= w, ) such that

with nonvanishing amplitude follows from the existence of

spatial inhomogeneities. For this purpose, introduce the com- 1, .
plex field |V|(t)=§wb0+ AV sin(w4t) (15)

C. Trapping oscillations

N
M(N):i 2 eXp(iX|)E|M(N)|eXp(i Ny, (10) With_AV>0 the amplitude of Qscillations ar_tdbo the (qua-
N =1 dratic) average bounce pulsation, one obtains
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d|V| an/ag
W:(DlAvcoiwlt) (16) e.03p

0.025

so that taking the time average, denoted(by-);, of the
square of both Eqg14) and(16) one gets 0.0z}

AV=w; (M2 A7 oo

provided thata— # has a uniform distributiorie.g. if «— 0 0.01f
~ w,t for somew,). This simplified model, supposing only a
harmonic oscillation fotV|, shows that the amplitude of the °°***}
wave oscillations depends directly on the occurrence of
(x,p)-space inhomogeneities. Actually, for a homogeneous 1 2 3 1 5 6

SN —1/2
phase space, E(L7) implies thatAV scales at most &$ FIG. 7. Coefficienta,/ay (n=1) of the Fourier decomposition

and vanishes in the kinetic limit. of amplitudew?(t) during the first time window 38 y, t<65 for

However, consider now the case where ¢ is the bary-  N=48000(solid curvé and N=768 000(dashed curveparticles,
centric position, in the reference frame of the wave, of arys a function of normalized frequency.

inhomogeneityclump composed of a finite fractiofM| of
the particles. If this Clump is Sufficiently close to the bottom Sweep5[28]_ In the present case, the period\bfs basica”y
of the potential well, therx(t) — 6(t) is small and Eq(17)  the trapped particles’ bouncing period, which makes the

- O,

can be reduced to “slow chaos” approximation rather crude.
o n1/2 The chaos generated by a pulsating separatrix can also be
AV=w1 [M[(2(a=6)%)7, (18 characterized using the Fourier decomposition of the wave

where((a— )% is the mean distance of the clump from V=2, - —=lvnlexplanttyn), With w,=27n/T. Then

the center of the resonance cat's eye. Note thidtmay be the test particle experiences a force' der_iving fromeﬁeo
small even ifM is large, provided that the clump stays close!iVe many-wave fielfthough the Hamiltoniai5) involves a

to the bottom of the wel[27]. single wavg,

A striking example is given by the cold beam-wave insta-
bility [11], for which a macroscopic fraction of the particles X=—22, |va|Sin(X+ wst—xn) (20)
belong to a so-callednacroparticlethat oscillates near the n
bottom (elliptic point) of the potential well and drives the
wave amplitude oscillations as shown in Fig. 2. Another il-and the overlaps between resonances in this force field cause
lustration of Eq.(18) is given by Figs. 2 and 4 of Reff6]. In  the particle to move chaotical29].
Vlasov simulations, as the spatial resolutldpis increased, We computed the Fourier decompositionaf(t) for the
one observes a more refined phase space that reveals sol@m beam with initial distribution TL over two different
heterogeneities for the larger value M. This simulta- time intervals, onéwindow T,) just after the nonlinear satu-
neously goes with pronounced trapping oscillations at largéation with 38<y, t<65 and the other on@vindow T,) far
N, while the rough resolution, which has smeared out thdater with 250< v, t<302, for N=48000 andN=768 000

thin filamentation in the vortices, is associated to a flat, conparticles. The low frequency bias induced by the slow
stant amplitude in time. growth of the amplitude evolution has been removed by sub-

tracting the quadratic best fit of the wave evolution. The
Fourier decompositiotiwith 27/ T<wpg and T=T4 or T»)

D. Finite-N effects, trapping oscillations, and relaxation
reads

towards thermal equilibrium through chaos

We now discuss the actual process by which the wave- ® a
particle system relaxes. For this purpose, one can get a flavor wﬁ(t)= aol 1+ E —ncos( wnt+en) |, (21
of the stochasticitystrong or weak depending on resonance n=1 3o
overlapping or notthat a test particle would encounter in
(x,p) space at different stages of the evolution. where
In the equation of motiod) of any particle in the system 1 (to+T
(5 ao=wﬁo=? f wi(t)dt (22)
to

X=— w3(t)six—6(t)] (19
with y, to=38 or 250. Figures 7 and 8 show coefficients
the time dependence of the wave modulates the force on the,/a, as a function of the frequency normalized éyj, the
test particle. 1fV is approximately periodic over a time inter- fundamentain=0 being removed. Such a normalized form
val of lengthT, and if its period is large compared with the enables a direct comparison between the figtresspective
trapped particle bouncing period, the pulsations of the sepaf N andT). Below we use coefficients,,=a,, , wheren’
ratrix generate strong chaos in the domainxfp) space it is the index such thab,,,=n’27/T=nwyo. During the first
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FIG. 8. Coefficients,/ay (n=1) of the Fourier decomposition

of amplitude wﬁ(t) during the second time window 250yt

<302 as a function of normalized frequency, tar N=48 000 and

for (b) N=768 000 particles.
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the periodic motion induced by the main field component.
This process applies in the vicinity of the separatrix of the
main resonance and must be discussed using action-angle
variables. As recalled in the appendix, the corresponding pul-
sations are smaller thana, for untrapped particles, and
smaller thanwyy for trapped particledand for untrapped
ones very close to the separajriRarticles experiencing this
chaos easily cross the pulsating separatrix, i.e., change be-
tween trapped and untrapped motion.

The Fourier spectra in Fig. 7 show that the second process
is active, since onlyw=w,q lead to significant amplitudes
aun- This supports the analysis of chaos in our system as
“slow chaos” due to the pulsating resonan@s]. However,
corresponding amplitudes,,, are much smaller tham,.
Therefore, the pulsating resonance does not sweep the vicin-
ity of the bottom of the wave potential well, which allows
the particles close to the elliptic point to move quite regu-
larly, forming a macroparticle as in Fig. 2. This bottom of the
well may be separated from the surrounding chaotic domain
(swept by the separatpipy KAM surfaces in k,p,t) space
[28].

The more chaotic behavior is expected in the case where
the additional peaks, close t8),y, 2wy, and 3wy, are more
important. As this is the cag¢=48 000, our analysis is con-
sistent with the faster transport in velocity observed for the
smaller values oN and thus with the more rapid thermali-
zation in this case.

Considering the later time interval, (Fig. 8), it is strik-
ing to note that the differences between both spectra are
strongly reduced, so that one can estimate that a test particle

stageT, (Fig. 7), the behavior appears almost entirely drivenfeels a similar amo.unt.of stqchasticity for both valued\of
for largeN by a narrow spectrum of frequencies of the orderMoreover, the relative intensity of the secondary resonances

of the average trapping frequency, although, Xor 48 000,

other Fourier components are excited.

is smaller than in the time intervdl;, so that the separatrix
pulsations will be relatively smaller. As a result, the chaotic

Two types of chaos must be distinguished. The simplesgrowth of the wave also slows down. By contrast, the Vlasov
one is related to the classical overlap between the resonanceignulations, with their induction of coarse graining, even

of two waved 29| propagating at velocitie®iw,g andnwpy.

prevent the evolution of the system towards this second

The corresponding chaos is “fast,” namely, the frequenciesstage. Actually, these codes are unable to capture the spatial

of the relevant resonances are larger tagg. The stochas-

ticity parametef30] estimated as

N2ap,t\2apy,  V2apn/agt V2apm/ag
ST M nlwpy [m—n]

(23

is small for allm#0, n#0. This means that the effective

details of the phase space filamentation which are under the
scale of the mesh size, so that, after a certain stage, they
artificially make the system almost integrable.

E. (x,p)-space structures, smoothing, and numerical entropy
production in the Vlasov model

many-wave field does not generate strong chaos in velocity Finally, our numerical observations along with 47

ranges away from the wave nominal velocity.

enable one to describe properly the finleeffects on the

Similarly, one may search for chaos induced by the overthermalization process. Due to the initial asymmetry in ve-

lap between the component in EQO) with phase velocity

locity space(the initial distribution function has a positive

wpn>2wpo, and the central resonance, with phase velocity Oslope around the wave phase velogitiyeterogeneities will

Their resonance overlap{30] parameter so,=(2+ay

exist in the wave resonance during the first nonlinear oscil-

++/2a,,)/[nwye|~2/n is not large enough in our system to lations. IfN is increased, théweak chaos available to ther-
induce large scale chaos, transporting particles from thenalize the system disappears, and the system is driven by the

neighborhood of the wave nominal velocityith its natural

filamentary structure which develops inside the wave poten-

width 2w) to the neighborhood of waves with significantly tial well. The bottom of the well is an elliptic point for the

different phase velocities.

model, around which the correlations between trajectories

The second type of chaos is related to the resonant forcinnay decay algebraicallyd1], so that the filaments get thin-

by Fourier components with phase velocity,<2wpg, ON

ner and more entangled as time goes on.
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ASy(1)=S,(t)-S,(0) explicitly replace the actuadll particles of the initial dynam-
] ics by effective particles, which are redefined smoothly at
0.0035 4 each time step. PIC schemes have a further disadvantage in
] comparison with semi-Lagrangian schemes. They put the nu-
0.003 . : . A
] merical effort on cells according to their populations; by con-
0.0025 4 trast, semi-Lagrangian schemes ensure a similar accuracy for
] the poorly populatedX,p)-space domains as for the highly
0'002'5 populated onegl7], so that they describe frontiers irmore
0.0015 sharply.
] This discussion shows that the “irreversible” growth of
0.001 7 the wave is not related to the entropy production of this
0 0005_3 sub-grid-scale filamentation but to the chaotic trapping-
) ] detrapping proces®f which some small-scale structures are
0; - . . . r . by-productg. Although the smoothing may appear as a minor
0 5 10 15 20 25 30 nuisance in the chaotix(p) regions, it does actually force a
t% distinctly different evolution in the long term, and refining

FIG. 9. Evolution of the 2-entropys,=[(1—f)fdxdp as a the mesh does not prevent this.

function of timey,t in the Vlasov simulations for severbl, X N,
grids. The departure from zero indicates that the damping of trap- V. COMMENTS AND CONCLUSION

ping oscillations is spurious. In summary, dealing with the basic propagation of a

single electrostatic wave in a warm plasma, we presented

The filamentation described here mixes particles in th(?inite-N effects which do not merely result from numerical
neighborhood of the wave resonance. Particles with veloci- y

ties far away from the resonance are weakly sensitive to th&' ' ors and are missed in a kin_etic simulatior_1 ?‘pp“’a"h- Their
resonance, which they essentially average off. Therefore dnderstanding depends crucially on describing the particle

a S "
N becomes very arg, e syste long-tme evoluion i Gelvrice ! ) space, The senaive dependence of e
pendent on initial conditions in the neighborhood of the reso—initial ar?icle distribution in &.p) space[21] implies that
nance, and thermodynamical conclusidrelying on ergod- P :P) Sp P

icity in the energy surface and basic conservation Jamss the I|m|t:~_*, t—e and N—e d(.) hot commute. The _dnvmg_
longer apply. process in the system evolution is separatrix crossing, which

Now, to what extent do actual Vlasov simulations repro-reqUIres a geometric approach to the system dynamics. Fur-

duce either the kinetic equation evolution or the firitevo- ther work in this direction will also shed new light on the
foundations of frequently used approximations, such as re-

lution? Crudely speaking, kinetic simulations start to induce acing original dynamicél) (2) by coupled stochastic equa-
a bias with respect to the Vlasov equation, because of pha A g ongl yn ’ y coup q
10ns, in which particles undergo noisy transport.

space averaging, when the distribution function exhibits
structures on scales below their grid resolutiand this is
bound to happen One might expect that finer grids would ACKNOWLEDGMENTS

enable one to describe more precisely the long-time evolu- , )
tion of the system. However, refined grids also reduce the 'N€ authors are grateful to D.F. Escande for fruitful dis-
coarseness of the particle distribution ir,[§) space, and CUSSIons and a cr_ltlcal reading of the manuscript. 'M.C.F.
inhibit the noisy separatrix crossings. This in turn inhibits thethanks D. del-Castillo-Negrete and B. Carreras for stimulat-

wave second growth, which results from the coarseness dff9 discussions. M.C.F,, M.P., and D.G. were supported by
the particle distribution for an actual finite value Igf

the French Ministee de la Recherche et de la Technologie.
Our observations indicate that kinetic models are too ideM-C-F- thanks the French Ministe des Affaires Etranges
alized, in comparison with finitdl, and do not contain all the

for support at the Univeréitaieg[i Studi di Firenze. This
intricate behavior displayed by a discrete particles system!/OTK is part of the CNRS GdRystenes de Particules Char-
This can also be tested within kinetic theory. In particular,9€8S SParCh.

whereas the kinetic equation analytically preserves integral

functionals off like the 2-entropyS,(t)=/(1—f)fdxdp, APPENDIX: PERIODIC ORBITS OF THE PENDULUM
numerical schemes increaSgsignificantly, as shown in Fig. AND RESONANCE OVERLAP

9, when constant-contours form filaments inx;p) space

on scales below the grid mesh. This filamentatjdne to The pendulum equations reduce to the normal foi9)

anisochronism of nonlinear trapped motion, or sheaxjp)  With fixed parameter$=0 andwyo. The orbits of the pen-

spacé is smoothed by numerical partial differential equationdulum in (x,p) space(with x modulo 2) are fixed points

integrators, whileN-body dynamics follows the particles (0,0) and ¢r,0), the two branches of the separatrix and the

more realistically, sustaining the trapping oscillations. three types of periodic orbits. They are parametrized by the
This inability of the semi-Lagrangian scheme in reproduc-energy E=p?/2+ wf,(1—cosx)=0 and (if untrapped by

ing the filamentation over small scales is shared by othethe sign ofp. At the unstable fixed point and on the separa-

Vlasov schemes. In particular, particle-in-c@¥C) schemes  trix E=2w?,.
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The separatrix branches are limits of periodic orbits with  Trapped orbits have periodB(k)=4w,sK(k?), with O

periods going tee. Their equatiorp. = * 2wy cosk/2) im-
plies that the velocity ranges [ 2wy, 2wpo]-

Circulating orbits have periods decreasing for increasin

energyE=2w§ok‘2, where 6<k<1. Their period isT(k)

=2kwgolK(k2), with the complete elliptic integral K, and

k—1 on approaching the separatrix. Peribe Zmu,;ol oc-

<k<1. The period is larger than? w,y and increases with
the energy E=2w§0k2. The velocity is in the range

% - V2E,J2E].

To apply the resonance overlap picture, one considers
only the relative velocity of the two waves whose resonances
overlap. As the range associated with the main cat's eye is

curs fork~0.99, i.e., extremely close to the separatrix, with; _2,, ' 24, ], the classical resonance overlap picture

E~2.04 w?,. The next strong resonance, With= 7w,
occurs fork=0.8, i.e., for particles wittE~3.17 w3, and
15 wb0$|p|$25 Wp0-

makes sense only for waves with relative velocity larger than
2wy With respect to the principal one.
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