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Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave mode
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The influence of the finite numberN of particles coupled to a monochromatic wave in a collisionless plasma
is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an
N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from
the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long
time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the
pulsating separatrix crossings drive the relaxation towards thermal equilibrium.
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I. INTRODUCTION

It is tempting to expect that kinetic equations and th
numerical simulation provide a fair description of the tim
evolution of systems with long-range or ‘‘global’’ interac
tions. Yet, physical systems are obviously composed o
finite ~albeit large! number of degrees of freedom. For in
stance, a plasma is a system ofN charged particles in inter
action. A relevant issue, both for fundamental and compu
tional reasons, is to test whether the kinetic description m
hide truly physical, finite-N, behaviors. We address this iss
for a typical example where long-range interactions co
into play, namely wave-particle interactions, which are ub
uitous in the physics of hot plasmas@1–3#.

Restricting to the electrostatic and collisionless case
has been shown that the interaction of resonant particles
Langmuir long-wavelength modes can be described b
Hamiltonian self-consistent model, instead of the traditio
Vlasov-Poisson kinetic approach. We consider the c
where particles interact with a single mode. In Sec. II,
present the single-wave Hamiltonian model, whose unive
features were recently emphasized in different contexts@2,3#.
The essential property of this model is its mean-field natu
resonant particles only interact with the wave, which is
only effective collective degree of freedom representing l
gitudinal oscillations of bulk particles. These bulk particle
whose individual characters are absent from the phys
mechanism at work, namely, wave-particle interaction,
then eliminated in our approach. There are thus no di
particle-particle interactions in our model. There is only
mean-field coupling, which enables one to derive rather
rectly its kinetic limit @4#. We use this single wave-particl
model to investigate the discrepancies between kinetic
finite-N approaches. Numerically, the finite-N Hamiltonian
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microscopic dynamics is computed through a symplec
code, whereas the numerical implementation of the kine
counterpart of this system involves a semi-Lagrangian V
sov solver.

In Sec. III, we focus on long time numerical simulation
of both kinetic and finite-N systems for initial conditions
modeling bump-on-tail beam-plasma instability or dampin
We review the well-known results of linear theory and sho
how long time behaviors are intrinsically related to the no
linear regime. Our model offers a good alternative to addr
the recently controversial issue@5,6# of the long-time evolu-
tion encountered in the Vlasov-Poisson system. In Sec.
we analyze quantitatively the finite-N effects. In particular,
we show how the discrepancies between kinetic and finiteN
long time behaviors can be related to the presently activ
investigated topics of the possible inadequacy of Gibbs th
modynamics to predict time-asymptotic dynamical behavi
in the limit N→` for long-rangesystems. More precisely
we give hints to the non-commutation of limitst→` and
N→` for the mean-field model. We conclude in Sec. V.

II. MEAN-FIELD MODEL FOR THE LANGMUIR
WAVE-PARTICLE INTERACTION

A. Links between the traditional Vlasov-Poisson treatment
of Langmuir waves and the self-consistent

wave-particle Hamiltonian model

Without collisions, plasma dynamics is dominated by c
lective processes. Langmuir waves and their familiar Land
damping and growth@7# are a good example of these pr
cesses, with many applications, e.g., plasma heating in fu
devices and laser-plasma interactions. For simplicity we
cus on the one-dimensional case, relevant to electrons
fined by a strong axial magnetic field, and assume that i
act as a neutralizing fixed background. The traditional
scription of the interacting particles and fields then rests
the ~kinetic! coupled set of Vlasov-Poisson equations@8,9#.
The current debate on the long-time evolution of this syst
hints that further insight in this fundamental process is s
needed@5#.
©2001 The American Physical Society07-1
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M-C. FIRPOet al. PHYSICAL REVIEW E 64 026407
Our approach to~Langmuir! wave-particle interaction
complements this usual treatment in that, to capture
physical mechanism at work, electrons are partitioned in
populations: bulk and tail. The idea behind this discrimin
tion is simple: wave-particle interaction involves the res
nant tail particles whose velocity is close to the phase ve
ity of the wave under consideration. These waves are just
collective macroscopic degrees of freedom, capturing
longitudinal oscillations of other nonresonant, bulk particl
so that these bulk particles participate in the effective wa
particle dynamics only through the waves.

Langmuir modes are thus collective oscillations of bu
particles, represented by slowly varying complex amplitud
in an envelope approximation. Their interaction with ind
vidual tail particles is described by a self-consistent set
Hamiltonian equations@1,10,11#. These already provided a
efficient basis@12# for investigating the cold beam plasm
instability and exploring the nonlinear regime of the bum
on-tail instability @13#. Analytically, they yield an intuitive
and rigorous derivation of spontaneous emission and Lan
damping of Langmuir waves@14#. In addition, as it elimi-
nates the rapid plasma oscillation scalevp

21 , this self-
consistent model offers a genuine tool to investigate lo
time dynamics.

B. The single wave model

We discuss the case of one wave interacting with the p
ticles. Though a broad spectrum of unstable waves is ge
ally excited when tail particles form a warm beam, t
single-wave situation can be realized experimentally@15#
and allows leaving aside the difficult problem of mode co
pling mediated by resonant particles@16#. Moreover, recent
studies@2,3# have stressed the genericness of the single-w
model, which we discuss later on.

Consider an electrostatic potential perturbationF(z,t)
5fk(t)expi(kz2vkt)1c.c. ~c.c. means complex conjugate!
with complex envelopefk , in a one-dimensional plasma o
lengthL with periodic boundary conditions~and neutralizing
background!. Wave numberk and frequencyvk satisfy a
dispersion relatione(k,vk)50. The density ofN ~quasi!
resonant electrons iss(z,t)5(nL/N)( l 51

N d@z2zl(t)#,
wheren is the electron number density andzl is the position
at timet of electron labeledl ~with chargee and massm).
Nonresonant electrons contribute only through the definit
of the dielectric functione, so thatfk and thezl ’s obey
coupled equations@1,12#

dfk

dt
5

ine

e0k2N~]e/]vk!
(
l 51

N

exp@2 ikzl1 ivkt#, ~1!

d2zl

dt2
5

iek

m
fk exp@ ikzl2 ivkt#1c.c. ~2!

with e0 the vacuum dielectric constant. We renormalize tim
and positions to t5at, xl5kzl2vkt, where a3

5ne2/@me0(]e/]vk)#. In particular,a5(n/2np)1/3vp for a
cold plasma with densitynp , plasma frequencyvp , and
02640
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dielectric functione(k,v)512vp
2/v2. With these rescaled

variables andV5(ek2fk)/(a
2m), this system defines the

self-consistent dynamics~with N11 degrees of freedom!

V̇5 iN21(
l 51

N

exp~2 ix l !, ~3!

ẍl5 iV exp~ ix l !2 iV* exp~2 ix l ! ~4!

for the coupled evolution~in dimensionless form! of the
electrons and wave complex amplitude~a star means a com
plex conjugate and•5d/dt). This evolution derives from the
Hamiltonian

H~xl ,pl ,z,z* !5(
l 51

N S pl
2

2
2N21/2zeixl2N21/2z* e2 ixl D ,

~5!

where z5N1/2V. This system conserves energyH5H and
momentumP5( l pl1uzu2. An efficient fourth-order sym-
plectic integration scheme is used to study this Hamilton
numerically@13#.

C. Kinetic limit and study of finite- N effects

As we follow the motion of each particle, we can addre
the influence of the finite number of particles on the lon
time behavior of the system. This question is eluded by
kinetic Vlasov-Poisson description, and one might argue t
finite N is analogous to numerical discretization in solvin
kinetic equations. Thus we investigate the kinetic limit,N
→`. As there is no direct particle-particle interaction in o
model ~5!, it is possible to express in a simple way theN
→` limit through a parallel treatment of the particles a
the wave. The mean-field coupling between collect
~wave! and individual~particles! degrees of freedom enable
one to avoid the derivation of a full Bogoliubov-Born-Gree
Kirkwood-Yvon ~BBGKY! hierarchy.

In the kinetic limit N→`, the discrete distributions is
thus replaced with a densityf (x,p,t), and system~3!,~4!
yields the Vlasov-wave system

dV

dt
5 i E exp~2 ix ! f ~x,p,t !dxdp, ~6!

] f

]t
1p

] f

]x
1@ iV exp~ ix !2 iV* exp~2 ix !#

] f

]p
50. ~7!

For initial data approaching a smooth functionf as N→`,
the solutions of Eqs.~3!,~4! have been proved to converge
those of the Vlasov-wave system~6!,~7! over any finite time
interval @4#. This legitimizes our comparison between fini
N and kinetic behaviors.

The kinetic model~6!,~7! is integrated numerically by a
semi-Lagrangian solver, which covers the (x,p) space with a
rectangular mesh. The functionf ~interpolated by cubic
splines! is transported along the characteristic lines of t
7-2
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LONG-TIME DISCRETE PARTICLE EFFECTS VERSUS . . . PHYSICAL REVIEW E 64 026407
kinetic equation, i.e., along trajectories of the original p
ticles @17#. Therefore, in addition to the truly physical effec
of the discrepancies between finiteN and kinetic systems on
long time simulations, we shall also compare in this arti
computational finite grid effects of the kinetic solver with th
granular aspects of theN-particle system@18#.

D. Universal features of the single-wave model

The single wave model was first formulated@12,10# as a
simplified model to treat the instability due to a weak co
electron beam in a plasma with fixed ions. For this singu
case, it was clear that retaining only a single Langmuir mo
was a good approximation even till some primary stage
nonlinear saturation. This derivation involved natural a
proximations, but did nota priori preserve the Hamiltonian
or Lagrangian structure of the dynamics~though the latter is
recovered in the final equations!, and a more direct deriva
tion within the Hamiltonian and Lagrangian formalism h
been established@1,11#.

Recently, different studies@2,3# have extended the regim
of application of the single-wave model to a much larg
class of instabilities and have derived it in a generic way
different contexts. Crawford and Jayaraman@2# studied the
collisionless nonlinear evolution of a weakly unstable mo
in the limit of a vanishing growth rateg→01. They derived
in this limit, for a multispecies Vlasov plasma, th
asymptotic features of the electric field and distribution fun
tions. These reveal that the asymptotic electric field turns
to be monochromatic~at the wavelength of the linear un
stable mode! and that thenonresonantparticles respond to
this electric field in an essentially linear fashion whereas
resonantparticle distribution has a much more complicat
structure, determined by nonlinear processes, e.g., par
trapping. That is, starting from a much wider class of ins
bilities than the original single wave model proposed
O’Neil, Winfrey, and Malmberg@12#, Crawford and Jayara
man derive asymptotic forms for the electric field and dis
bution functions that precisely feature the assumptions
the single wave model.

del-Castillo-Negrete@3# derived initially the single wave
picture using matched asymptotic methods to treat the r
nant and nonresonant particles. In the wider context of s
consistent chaotic transport in fluid dynamics, he a
showed that the single-wave model provided a simplifi
starting point to study the difficult problem ofactive trans-
port ~as opposed to the transport ofpassivescalars which do
not affect the flow!. Actually, the single-wave model capture
the essential features of the self-consistent transport of
ticity, i.e., an advective field that modifies the flow whi
being transported, through the constraint of a vortici
velocity coupling. Self-consistent active transport is a ub
uitous phenomenon in geophysical flows or in fusion pl
mas with the problem of magnetic confinement.

Finally, we remark that the single wave model has clo
connections, to be further clarified, with systems of coup
nonlinear oscillators, such as those first studied by Kuram
@19#. The occurrence of a phase transition in the regime
Landau damping@20#, with order parameter the mean-fie
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intensity of the wave, is a manifestation of these analogi
Now we return to the original motivation of this work an

review wave-beam instability and damping.

III. WAVE-BEAM INSTABILITY

A. Linear study

Let us first study linear instabilities and remark that o
solution of Eqs.~3!,~4! corresponds to vanishing fieldV0
50, with particles evenly distributed on a finite set of bea
with given velocities. Small perturbations of this solutio
havedV5dV0egt, with rateg solving @14#

g5g r1 ig i5 iN21(
l 51

N

~g1 ipl !
22. ~8!

For a monokinetic beam with velocityU, Eq. ~8! reduces to
g(g1 iU )25 i ; the most unstable solution occurs forU50,
with g r5A3/2 andg i51/2. For a warm beam with smoot
initial distribution f (p) ~normalized to* f dp51), the con-
tinuous limit of Eq.~8! yields

g5 i E ~g1 ip !22f ~p!dp. ~9!

For a sufficiently broad distribution@ u f 8(0)u!1#, we obtain
ug r ug r5g rp f 8(2g i), where f 85d f /dp, and, for u f 9(0)u
!p21, one findsg i'pg r f 9(0). Except for the trivial solu-
tion given byg r50, one easily checks that other solutio
can only exist for a positive slopef 8(0). Then the perturba-
tion is unstable as the time behavior ofdV is controlled by
the eigenvalueg with positive real part, i.e., with growth rat
g r'gL5p f 8(0).0. For negative slope, one recovers t
linear Landau damping paradox@7#: the observed decay rat
gL5p f 8(0),0 is not associated with genuine eigenvalu
but with phase mixing of eigenmodes@14,20–22#. This is a
direct consequence of the Hamiltonian nature of the dyna
ics @14#.

B. Nonlinear regime

This linear analysis generally fails to give the large tim
behavior. This is obvious for the unstable case as nonlin
effects are no longer negligible when the wave intens
grows so that the bounce frequencyvb(t)5A2uV(t)u of
trapped particles in the wave becomes of the order of
linear growth rateg r .

We used the monokinetic case as a testbed@21,23#. As
seen in Fig. 1, finite-N simulations show that the unstab
solution grows as predicted, until it saturates to a limit-cyc
like behavior where the trapping frequencyvb(t) oscillates
between 1.2g r and 2g r . In this regime, some of the initially
monokinetic particles have been scattered rather unifor
over the chaotic domain, in and around the pulsating re
nance, while others form a trapped bunch inside this re
nance~away from the separatrix! as observed in Fig. 2@23#.
This dynamics is quite well described by effective Hamilt
nians with few degrees of freedom@11,21#. Note that it can-
not be easily followed by a numerical Vlasov solver, as t
7-3
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FIG. 1. Time evolution ofvb(t)/g r for the
cold beam instability. The initial velocity of the
beam was chosen to maximizeg r and the beam is
initially spatially homogeneous.
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initial beam has a singular velocity distribution function.
In this article, we discuss the large time behavior of t

warm beam case, withf 8(p0)Þ0 at the wave nominal ve
locity p050. Figure 3 displays three distribution function
~in dimensionless form! with similar velocity width~herec
normalizes* f dp51 in each case!: ~i! a function~CD! giv-
ing the same decay rate for all phase velocitiesf (p)5c
2ac/(p12p) if 23.96<p<3.96 and f (p)50 otherwise,
with a511.89 andp1515.85,~ii ! a function~CG! giving a
constant growth rate for all phase velocities@13#, f (p)5c
2ac/(p11p) if 23.96<p<3.96 and f (p)50 otherwise,
with a511.89 andp1515.85, ~iii ! a truncated Lorentzian
~TL! with positive slope f (p)5(c/p)/@(p2p1)21a2# if
27.42<p<3.18 andf (p)50 otherwise, witha52.12 and
p151.06.

For the growing case, nonlinearities result from t
growth of the wave intensity. For the damping case, the
ear description introduces time secularities which ultimat
may cause the linear theory to break down. The ultim
evolution is intrinsically nonlinear, not only if the initial field
amplitude is large, as in O’Neil’s seminal trapping picture f
one wave@8#, but also if one considers the system evoluti
over time scales of the order of the trapping time~which may
be large if the initial wave amplitude is small!. The question
of the long-time fate of plasma wave amplitude is thus
from trivial @5#. Though some simulations@24# suggest that
nonlinear plasma waves eventually approach a Bernst
Greene-Kruskal steady state@25# instead of a Landau vanish
ing field, the answer should rather strongly depend on ini
conditions@6#. Our N-particle, one-wave system is the sim
plest model to test these ideas.

IV. FINITE N-EFFECTS AND KINETIC TREATMENT
IN LONG-TIME DYNAMICS

First of all let us mention that for finiteN, the particles are
initially distributed in (x,p) so that their distribution ap
proachesf smoothly in the largeN limit @1,13,14#.
02640
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A. The damping case

A thermodynamical analysis@20# predicts that, for a warm
beam~i.e., if the velocity distributionf has a large width, as
in Fig. 3! and small enough initial wave amplitude,vb as-
ymptotically scales asN21/2 in the limit N→`. Figure 4
shows the evolution of a small amplitude wave launched
the beam. TheN-particle system~curve N) and the kinetic
system~curve V) initially damp exponentially as predicte
by perturbation theory@14#, for a time of the order ofugLu21.
After that phase-mixing time, trapping induces nonline
evolution and both systems evolve differently. For t
N-particle system, the wave grows to a thermal level t
scales asN21/2, corresponding to a balance between damp
and spontaneous emission@14,20#. For the kinetic system
initial Landau damping is followed by slowly damped tra
ping oscillations around a mean value; this mean value a
decays to zero, at a rate which decreases for refined m
size. Figure 4 thus reveals that finiteN and Vlasov behaviors
can considerably diverge as spontaneous emission is t
into account.

Figure 5 represents the time evolution of the wave am
tude for different values ofN. It clearly shows how finite-N
wave evolutions depart progressively from theN→` curve
~the later for largerN). One should also notice, from Figs.
and 5 and for sufficiently largeN, the onset of nonlinear
effects at large time. In spite of the smallness of the init
values of the wave amplitude, nonlinear effects~through
trapping! eventually come into play and stop Landau exp
nential decay, marking the beginning of a different dynam
cal regime for which the decay is far slower.

B. The single wave warm beam instability

Now consider a warm beam with a velocity distributio
with a positive slope atp050. Line N1 (N2) of Fig. 6
displays ln@vb(t)/gr# versus time in a numerical integration o
~3!,~4! for a CG distribution withN5128 000~512 000! and
7-4
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LONG-TIME DISCRETE PARTICLE EFFECTS VERSUS . . . PHYSICAL REVIEW E 64 026407
g r50.08. LineV1 (V2) shows the evolution of ln@vb(t)/gr#
versusg r t in numerical integration of the kinetic system fo
the same initial conditions with a 323128 (25631024) grid
in (x,p) space. All four curves exhibit the same initial exp
nential growth of linear theory with less than 1% error on t

FIG. 2. Snapshots of the (x,p) space at~a! g r t56.24, ~b! g r t
517.5, ~c! g r t5100 for the cold beam simulation of Fig. 1. Do
are theN510 000 particles, which were initially distributed on
monokinetic beam, faster than the wave~with very small initial
intensity!. The instantaneous wave resonance ‘‘cat eye’’ is drawn
help in visualizing the instantaneous force on particles.
02640
growth rate. Saturation occurs forvb /g r'3.1 @9#. LinesN1
andV1 do not superpose beyond the first trapping oscillat
after saturation. Note that, in our system, oscillating satu
tion cannot be related to excitation of sideband or sate
Langmuir waves as our single-wave Hamiltonian does
allow for any spectrum of waves.

Beyond the first trapping oscillation, kinetic simulation
exhibit a second growth at a rate controlled by mesh s
Line V2 suggests that a kinetic approach would predic
level close to the trapping saturation level on a time sc
awarded by reasonable integration time. This level is fa
below the thermodynamic levelVth predicted by a Gibbsian
approach@20#. Such pathological relaxation properties in th
N→` limit seem common to mean-field long-range mod
@26#. Both kinetic simulations also exhibit a strong dampi
of trapping oscillations, which disappear after a few oscil
tions, whereas finite-N simulations show persistent trappin
oscillations.

One could expect that finite-N effects would mainly damp
these oscillations, so that the wave amplitude reaches a
teau. However their amplitude does not depend on the n
ber of particlesN, which shows that they are not an artifa
due to ‘‘poor accuracy’’ of finite-N simulations. Moreover
the wave amplitude slowly grows further, whereas the vel
ity distribution function flattens over wider intervals of ve
locity @18,23#.

FIG. 4. Time evolution of ln@vb(t)/ugLu# for a CD velocity distri-
bution and initial wave amplitude below thermal level:~N!
N-particles system withN532 000, ~V! kinetic scheme with 32
3512 (x,p) grid. Inset: short-time evolution.

o

FIG. 3. Initial warm beam velocity distributions.
7-5
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M-C. FIRPOet al. PHYSICAL REVIEW E 64 026407
This second growth after the first trapping saturation
pends on the shape of the initial distribution function. In F
6~b!, curveN2 is the same as in Fig. 6~a! but computed over
a longer duration, and curveN3 corresponds toN564 000
with the TL distribution of Fig. 3. Although curveN3 corre-
sponds to 8 times fewer particles than curveN2, the final
level reached at the end of the simulation is lower. In
second growth regime, particles are transported furthe
velocity, so that the plateau inf (p) broadens with time. As
will be clearly shown in Sec. IV D, this spreading is due
separatrix crossing, i.e. successive trapping and detrap
by the wave@23#. As the resonance width of the wave sep
ratrix grows, the wave can trap particles with initial veloci
further away from its phase velocity. Noting that the TL d
tribution decays while the CG distribution still grows forv
.0.05, we see that, with TL, fewer particles can give m
mentum to the wave when being trapped~asP is conserved!;
hence the second growth is slower for the TL distribution

We followed the evolution of the wave amplitude of cur
N3 of Fig. 6~b! up tog r t51750. Starting from the first trap
ping saturation level, equal to 40% of the thermodynam
level Vth , we observe persistent amplitude fluctuations w
a growth rate that slowly decreases as we reach 0.78Vth at
the end of the computation.

Line N4 of Fig. 6~b! corresponds to the TL distributio
with 2 048 000 particles and shows persistent oscillati
with approximately the same amplitude as forN564 000.

C. Trapping oscillations

Let us show that the occurrence of trapping oscillatio
with nonvanishing amplitude follows from the existence
spatial inhomogeneities. For this purpose, introduce the c
plex field

M (N)5
1

N (
l 51

N

exp~ ix l ![uM (N)uexp~ ia (N)!. ~10!

FIG. 5. Time evolution of ln@vb(t)/ugLu# for an initial CD veloc-
ity distribution and different values ofN. When necessary for read
ability, curves were smoothed through a sliding window averag
02640
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In the kinetic Vlasov limit, it is the first Fourier componen
of the spatial density

M (`)5E exp~ ix ! f ~p,x,t !dpdx. ~11!

A spatially homogeneous phase space with independent
ticles corresponds obviously to auM (N)u scaling asN21/2,
i.e., to a vanishinguM (`)u. From Eq.~3!, and dropping the
superscript (N), it follows that

V̇5 iM * . ~12!

Putting

2V52uVuexp~2 iu!5vb
2 exp~2 iu!, ~13!

one obtains from Eq.~12!

duVu
dt

5uM usin~a2u!. ~14!

Moreover, if the wave amplitude displays a sinusoidal te
poral evolution~e.g., due to trapping oscillations, thenv1
5vb0) such that

uVu~ t !5
1

2
vb0

2 1DV sin~v1t ! ~15!

with DV.0 the amplitude of oscillations andvb0 the ~qua-
dratic! average bounce pulsation, one obtains

FIG. 6. Time evolution of ln@vb(t)/gr#. ~a! CG initial distribu-
tion: kinetic scheme with (V1) 323128, (V2) 25631024 (x,p)
grid; N-particles system with (N1) N5128 000, (N2) N
5512 000;~b! Comparison of CG (N2) with TL initial distribution
for (N3) N564 000, (N4) N52 048 000.
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duVu
dt

5v1DV cos~v1t ! ~16!

so that taking the time average, denoted by^•••& t , of the
square of both Eqs.~14! and ~16! one gets

DV5v1
21^uM u2& t

1/2 ~17!

provided thata2u has a uniform distribution~e.g. if a2u
'v2t for somev2). This simplified model, supposing only
harmonic oscillation foruVu, shows that the amplitude of th
wave oscillations depends directly on the occurrence
(x,p)-space inhomogeneities. Actually, for a homogene
phase space, Eq.~17! implies thatDV scales at most asN21/2

and vanishes in the kinetic limit.
However, consider now the case wherea2u is the bary-

centric position, in the reference frame of the wave, of
inhomogeneity~clump! composed of a finite fractionuM u of
the particles. If this clump is sufficiently close to the botto
of the potential well, thena(t)2u(t) is small and Eq.~17!
can be reduced to

DV5v1
21uM u^2~a2u!2& t

1/2, ~18!

where^(a2u)2& t
1/2 is the mean distance of the clump fro

the center of the resonance cat’s eye. Note thatDV may be
small even ifM is large, provided that the clump stays clo
to the bottom of the well@27#.

A striking example is given by the cold beam-wave ins
bility @11#, for which a macroscopic fraction of the particle
belong to a so-calledmacroparticlethat oscillates near the
bottom ~elliptic point! of the potential well and drives th
wave amplitude oscillations as shown in Fig. 2. Another
lustration of Eq.~18! is given by Figs. 2 and 4 of Ref.@6#. In
Vlasov simulations, as the spatial resolutionNx is increased,
one observes a more refined phase space that reveals
heterogeneities for the larger value ofNx . This simulta-
neously goes with pronounced trapping oscillations at la
Nx while the rough resolution, which has smeared out
thin filamentation in the vortices, is associated to a flat, c
stant amplitude in time.

D. Finite-N effects, trapping oscillations, and relaxation
towards thermal equilibrium through chaos

We now discuss the actual process by which the wa
particle system relaxes. For this purpose, one can get a fl
of the stochasticity~strong or weak depending on resonan
overlapping or not! that a test particle would encounter
(x,p) space at different stages of the evolution.

In the equation of motion~4! of any particle in the system
~5!

ẍ52vb
2~ t !sin@x2u~ t !# ~19!

the time dependence of the wave modulates the force on
test particle. IfV is approximately periodic over a time inte
val of lengthT, and if its period is large compared with th
trapped particle bouncing period, the pulsations of the se
ratrix generate strong chaos in the domain of (x,p) space it
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sweeps@28#. In the present case, the period ofV is basically
the trapped particles’ bouncing period, which makes
‘‘slow chaos’’ approximation rather crude.

The chaos generated by a pulsating separatrix can als
characterized using the Fourier decomposition of the w
V(t)5(vn52`

` uvnuexp(ivnt1xn), with vn52pn/T. Then

the test particle experiences a force deriving from aneffec-
tive many-wave field@though the Hamiltonian~5! involves a
single wave#,

ẍ522(
n

uvnusin~x1vnt2xn! ~20!

and the overlaps between resonances in this force field c
the particle to move chaotically@29#.

We computed the Fourier decomposition ofvb(t) for the
warm beam with initial distribution TL over two differen
time intervals, one~window T1) just after the nonlinear satu
ration with 38<gLt<65 and the other one~window T2) far
later with 250<gLt<302, for N548 000 andN5768 000
particles. The low frequency bias induced by the slo
growth of the amplitude evolution has been removed by s
tracting the quadratic best fit of the wave evolution. T
Fourier decomposition~with 2p/T!vb0 andT5T1 or T2)
reads

vb
2~ t !5a0S 11 (

n51

`
an

a0
cos~vnt1wn!D , ~21!

where

a05vb0
2 5

1

TEt0

t01T

vb
2~ t !dt ~22!

with gLt0538 or 250. Figures 7 and 8 show coefficien
an /a0 as a function of the frequency normalized byvb0, the
fundamentaln50 being removed. Such a normalized for
enables a direct comparison between the figures~irrespective
of N andT). Below we use coefficientsabn5an8 , wheren8
is the index such thatvn85n82p/T5nvb0. During the first

FIG. 7. Coefficientsan /a0 (n>1) of the Fourier decomposition
of amplitudevb

2(t) during the first time window 38<gLt<65 for
N548 000~solid curve! andN5768 000~dashed curve! particles,
as a function of normalized frequency.
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stageT1 ~Fig. 7!, the behavior appears almost entirely driv
for largeN by a narrow spectrum of frequencies of the ord
of the average trapping frequency, although, forN548 000,
other Fourier components are excited.

Two types of chaos must be distinguished. The simp
one is related to the classical overlap between the resona
of two waves@29# propagating at velocitiesmvb0 andnvb0.
The corresponding chaos is ‘‘fast,’’ namely, the frequenc
of the relevant resonances are larger thanvb0. The stochas-
ticity parameter@30# estimated as

sm,n5
A2abn1A2abm

um2nuvb0
5

A2abn /a01A2abm /a0

um2nu
~23!

is small for all mÞ0, nÞ0. This means that the effectiv
many-wave field does not generate strong chaos in velo
ranges away from the wave nominal velocity.

Similarly, one may search for chaos induced by the ov
lap between the component in Eq.~20! with phase velocity
vbn.2vb0, and the central resonance, with phase velocity
Their resonance overlap@30# parameter s0,n5(2Aa0

1A2abn)/unvb0u'2/n is not large enough in our system
induce large scale chaos, transporting particles from
neighborhood of the wave nominal velocity~with its natural
width 2vb0) to the neighborhood of waves with significant
different phase velocities.

The second type of chaos is related to the resonant for
by Fourier components with phase velocityvbn&2vb0, on

FIG. 8. Coefficientsan /a0 (n>1) of the Fourier decomposition
of amplitude vb

2(t) during the second time window 250<gLt
<302 as a function of normalized frequency, for~a! N548 000 and
for ~b! N5768 000 particles.
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the periodic motion induced by the main field compone
This process applies in the vicinity of the separatrix of t
main resonance and must be discussed using action-a
variables. As recalled in the appendix, the corresponding
sations are smaller than 2vb0 for untrapped particles, and
smaller thanvb0 for trapped particles~and for untrapped
ones very close to the separatrix!. Particles experiencing this
chaos easily cross the pulsating separatrix, i.e., change
tween trapped and untrapped motion.

The Fourier spectra in Fig. 7 show that the second proc
is active, since onlyv&vb0 lead to significant amplitudes
abn . This supports the analysis of chaos in our system
‘‘slow chaos’’ due to the pulsating resonance@28#. However,
corresponding amplitudesabn are much smaller thana0.
Therefore, the pulsating resonance does not sweep the v
ity of the bottom of the wave potential well, which allow
the particles close to the elliptic point to move quite reg
larly, forming a macroparticle as in Fig. 2. This bottom of th
well may be separated from the surrounding chaotic dom
~swept by the separatrix! by KAM surfaces in (x,p,t) space
@28#.

The more chaotic behavior is expected in the case wh
the additional peaks, close tovb0 , 2vb0, and 3vb0, are more
important. As this is the caseN548 000, our analysis is con
sistent with the faster transport in velocity observed for
smaller values ofN and thus with the more rapid thermal
zation in this case.

Considering the later time intervalT2 ~Fig. 8!, it is strik-
ing to note that the differences between both spectra
strongly reduced, so that one can estimate that a test par
feels a similar amount of stochasticity for both values ofN.
Moreover, the relative intensity of the secondary resonan
is smaller than in the time intervalT1, so that the separatrix
pulsations will be relatively smaller. As a result, the chao
growth of the wave also slows down. By contrast, the Vlas
simulations, with their induction of coarse graining, ev
prevent the evolution of the system towards this seco
stage. Actually, these codes are unable to capture the sp
details of the phase space filamentation which are under
scale of the mesh size, so that, after a certain stage,
artificially make the system almost integrable.

E. „x,p…-space structures, smoothing, and numerical entropy
production in the Vlasov model

Finally, our numerical observations along with Eq.~17!
enable one to describe properly the finite-N effects on the
thermalization process. Due to the initial asymmetry in v
locity space~the initial distribution function has a positiv
slope around the wave phase velocity!, heterogeneities will
exist in the wave resonance during the first nonlinear os
lations. If N is increased, the~weak! chaos available to ther
malize the system disappears, and the system is driven b
filamentary structure which develops inside the wave pot
tial well. The bottom of the well is an elliptic point for the
model, around which the correlations between trajecto
may decay algebraically@31#, so that the filaments get thin
ner and more entangled as time goes on.
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The filamentation described here mixes particles in
neighborhood of the wave resonance. Particles with vel
ties far away from the resonance are weakly sensitive to
resonance, which they essentially average off. Therefore
N becomes very large, the system long-time evolution is
pendent on initial conditions in the neighborhood of the re
nance, and thermodynamical conclusions~relying on ergod-
icity in the energy surface and basic conservation laws! no
longer apply.

Now, to what extent do actual Vlasov simulations rep
duce either the kinetic equation evolution or the finite-N evo-
lution? Crudely speaking, kinetic simulations start to indu
a bias with respect to the Vlasov equation, because of ph
space averaging, when the distribution function exhib
structures on scales below their grid resolution~and this is
bound to happen!. One might expect that finer grids woul
enable one to describe more precisely the long-time ev
tion of the system. However, refined grids also reduce
coarseness of the particle distribution in (x,p) space, and
inhibit the noisy separatrix crossings. This in turn inhibits t
wave second growth, which results from the coarsenes
the particle distribution for an actual finite value ofN.

Our observations indicate that kinetic models are too i
alized, in comparison with finiteN, and do not contain all the
intricate behavior displayed by a discrete particles syst
This can also be tested within kinetic theory. In particul
whereas the kinetic equation analytically preserves inte
functionals of f like the 2-entropyS2(t)5*(12 f ) f dxdp,
numerical schemes increaseS2 significantly, as shown in Fig
9, when constant-f contours form filaments in (x,p) space
on scales below the grid mesh. This filamentation@due to
anisochronism of nonlinear trapped motion, or shear in (x,p)
space# is smoothed by numerical partial differential equati
integrators, whileN-body dynamics follows the particle
more realistically, sustaining the trapping oscillations.

This inability of the semi-Lagrangian scheme in reprodu
ing the filamentation over small scales is shared by ot
Vlasov schemes. In particular, particle-in-cell~PIC! schemes

FIG. 9. Evolution of the 2-entropyS25*(12 f ) f dxdp as a
function of timeg r t in the Vlasov simulations for severalNx3Nv
grids. The departure from zero indicates that the damping of t
ping oscillations is spurious.
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explicitly replace the actualN particles of the initial dynam-
ics by effective particles, which are redefined smoothly
each time step. PIC schemes have a further disadvantag
comparison with semi-Lagrangian schemes. They put the
merical effort on cells according to their populations; by co
trast, semi-Lagrangian schemes ensure a similar accurac
the poorly populated (x,p)-space domains as for the high
populated ones@17#, so that they describe frontiers inf more
sharply.

This discussion shows that the ‘‘irreversible’’ growth o
the wave is not related to the entropy production of t
sub-grid-scale filamentation but to the chaotic trappin
detrapping process~of which some small-scale structures a
by-products!. Although the smoothing may appear as a min
nuisance in the chaotic (x,p) regions, it does actually force
distinctly different evolution in the long term, and refinin
the mesh does not prevent this.

V. COMMENTS AND CONCLUSION

In summary, dealing with the basic propagation of
single electrostatic wave in a warm plasma, we presen
finite-N effects which do not merely result from numeric
errors and are missed in a kinetic simulation approach. T
understanding depends crucially on describing the part
dynamics in (x,p) space. The sensitive dependence of
microscopic chaotic evolution to the fine structure of t
initial particle distribution in (x,p) space@21# implies that
the limits t→` and N→` do not commute. The driving
process in the system evolution is separatrix crossing, wh
requires a geometric approach to the system dynamics.
ther work in this direction will also shed new light on th
foundations of frequently used approximations, such as
placing original dynamics~1!,~2! by coupled stochastic equa
tions, in which particles undergo noisy transport.
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APPENDIX: PERIODIC ORBITS OF THE PENDULUM
AND RESONANCE OVERLAP

The pendulum equations reduce to the normal form~19!
with fixed parametersu50 andvb0. The orbits of the pen-
dulum in (x,p) space~with x modulo 2p) are fixed points
(0,0) and (p,0), the two branches of the separatrix and t
three types of periodic orbits. They are parametrized by
energy E5p2/21vb0

2 (12cosx)>0 and ~if untrapped! by
the sign ofp. At the unstable fixed point and on the sepa
trix E52vb0

2 .

p-
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The separatrix branches are limits of periodic orbits w
periods going tò . Their equationp6562vb0 cos(x/2) im-
plies that the velocity ranges in@22vb0 ,2vb0#.

Circulating orbits have periods decreasing for increas
energyE52vb0

2 k22, where 0,k,1. Their period isT(k)
52kvb0

21K(k2), with the complete elliptic integral K, and
k→1 on approaching the separatrix. PeriodT52pvb0

21 oc-
curs fork'0.99, i.e., extremely close to the separatrix, w
E'2.04 vb0

2 . The next strong resonance, withT5pvb0
21,

occurs fork'0.8, i.e., for particles withE'3.17 vb0
2 and

1.5 vb0<upu<2.5 vb0.
s

3

02640
g

Trapped orbits have periodsT(k)54vb0
21K(k2), with 0

,k,1. The period is larger than 2p/vb0 and increases with
the energy E52vb0

2 k2. The velocity is in the range
@2A2E,A2E#.

To apply the resonance overlap picture, one consid
only the relative velocity of the two waves whose resonan
overlap. As the range associated with the main cat’s ey
@22vb0 ,2vb0#, the classical resonance overlap pictu
makes sense only for waves with relative velocity larger th
2vb0 with respect to the principal one.
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